
I18N, M17N,
UNICODE,
AND ALL THAT

Tim Bray
General-Purpose Web Geek
Sun Microsystems

/[a-zA-Z]+/
This is probably a bug.

Storage

The Problems We Have To Solve

Identifying
characters

Byte⇔character

mapping Transfer

Good string API

Published in
1996; it has 74
major sections,
most of which
discuss whole
families of writing
systems.

www.w3.org/TR/charmod

Identifying
Characters

0 0
00

0

1 0
00

0

2 0
00

0

3 0
00

0

4 0
00

0

5 0
00

0

6 0
00

0

7 0
00

0

8 0
00

0

9 0
00

0

A 00
00

B 00
00

C 00
00

D 00
00

E 00
00

F 00
00

Basic Multilingual Plane

Dead Languages & Math

Han Characters

Language Tags
Private Use

1,114,112 Unicode Code Points

10
 00

00

17 “Planes” each with 64k code points: U+0000 – U+10FFFF

Non-BMP “Astral” PlanesBMP

99,024 characters defined in Unicode 5.0

00
00

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

A00
0

B00
0

C00
0

D00
0

E00
0

F00
0

Alphabets

Punctuation
Asian-language Support

Han Characters

Yi Hangul

Surrogates
Private Use

*

(*: Legacy-Compatibility junk)

The Basic Multilingual Plane (BMP)
U+0000 – U+FFFF

00C8;LATIN CAPITAL LETTER E WITH
GRAVE;Lu;0;L;0045 0300;;;;N;LATIN
CAPITAL LETTER E GRAVE;;;00E8;
“Character #200 is LATIN CAPITAL LETTER
E WITH GRAVE, a lower-case letter,
combining class 0, renders L-to-R, can be
composed by U+0045/U+0300, had a different name in
Unicode 1, isn’t a number, lowercase is U+00E8.”

Unicode Character Database

www.unicode.org/Public/Unidata

È

$
U+0024 DOLLAR SIGN

Ž
U+017D LATIN CAPITAL LETTER Z WITH CARON

®
U+00AE REGISTERED SIGN

ή
U+03AE GREEK SMALL LETTER ETA WITH TONOS

Ж
U+0416 CYRILLIC CAPITAL LETTER ZHE

א
U+05D0 HEBREW LETTER ALEF

ظ
U+0638 ARABIC LETTER ZAH

ਗ
U+0A17 GURMUKHI LETTER GA

ઈ
U+0A88 GUJARATI LETTER II

ฆ
U+0E06 THAI CHARACTER KHO RAKHANG

༒
U+0F12 TIBETAN MARK RGYA GRAM SHAD

Ꮊ
U+13BA CHEROKEE LETTER ME

ᐑ
U+1411 CANADIAN SYLLABICS WEST-CREE WII

ᠠ
U+1820 MONGOLIAN LETTER ANG

‰
U+2030 PER MILLE SIGN

⅝
U+215D VULGAR FRACTION FIVE EIGHTHS

↩
U+21A9 LEFTWARDS ARROW WITH HOOK

∞
U+221E INFINITY

❤
U+2764 HEAVY BLACK HEART

さ
U+3055 HIRAGANA LETTER SA

ダ
U+30C0 KATAKANA LETTER DA

中
U+4E2D (Han character)

語
U+8A9E (Han character)

걺
U+AC7A (Hangul syllabic)

!
U+1D12B (Non-BMP) Musical Symbol Double Flat

㳘
U+2004E (Non-BMP) (Han character)

Huge repertoire
Room for growth
Private use areas

Sane process
Unicode character database

Ubiquitous standards/tools support

Nice Things About Unicode

Combining forms
Awkward historical compromises

Han unification

Difficulties With Unicode

Pro: en.wikipedia.org/wiki/Han_Unification
Contra: tronweb.super-nova.co.jp/characcodehist.html
Neutral: www.jbrowse.com/text/unij.html

Han Unification

Alternatives

For Japanese scholarly/historical work: Mojikyo,
www.mojikyo.org; also see Tron, GTCode.
Also see Wittern, Embedding Glyph Identifiers in
XML Documents.

Byte⇔Character Mapping

中

U+4E2D (Han character)
How do I encode 0x4E2D in bytes

for computer processing?

Storing Unicode in Bytes

Official encodings: UTF-8, UTF-16, UTF-32
Practical encodings: ASCII, EBCDIC, Shift-
JIS, Big5, GB18030, EUC-JP, EUC-KR, ISCII,
KOI8, Microsoft code pages, ISO-8859-*, and
others.

UTF-* Trade-offs

UTF-8: Most compact for Western languages,
C-friendly, non-BMP processing is transparent.
UTF-16: Most compact for Eastern languages,
Java/C#-friendly, C-unfriendly, non-BMP
processing is horrible.
UTF-32: wchar_t, semi-C-friendly, 4 bytes/char.
Note: Video is 100MB/minute...

Web search: “characters vs. bytes”

?

Text Arriving Over the Network

?

?
?

?
?

?
?

?
?

?
?

?

?
?

?
?

?
?

?
?

?

?

?

?

?
?

?
?

?

?
?

?
?

?
?

?

?

?
?

?
?

?

?
?

?

?

$Ž®ήЖظאਗઈฆ༒Ꮊ
ᐑᠠ‰⅝↩∞❤さダ
中語걺!㳘

?
?

?
?

?
?

?
?

?
?

?
?

?

?

?

?
?

?
?

?

?

?

?

?
?

?

?

?

?
?

? ?
?

? ?

?

?

An XML document knows what
encoding it’s in.

“
”

- Larry Wall

What Java Does

Strings are Unicode. A Java “char” is actually a
UTF-16 code point, so non-BMP handling is
shaky. Strings and byte buffers are separate;
there are no unsigned bytes. The
implementation is generally solid and fast. The
APIs are a bit clumsy and there’s no special
regexp syntax.

What Perl Does

Perl 5 has Unicode support, in theory. In a
typical real-world application, with a Web
interface and files and a database, it is very
difficult to round-trip Unicode without damage.
However, regexp support is excellent. Perl 6 is
supposed to fix all the problems...

April 19, 2006 (c) 2006 Python Software Foundation 47

String Types Reform

• bytes and str instead of str and unicode
– bytes is a mutable array of int (in range(256))
– encode/decode API? bytes(s, "Latin-1")?
– bytes have some str-ish methods (e.g. b1.find(b2))
– but not others (e.g. not b.upper())

• All data is either binary or text
– all text data is represented as Unicode
– conversions happen at I/O time

• Different APIs for binary and text streams
– how to establish file encoding? (Platform decides)

What Python 3000 Will Do

(Guido’s Slide)

What Ruby Does
% * + << <=> == =~ [] []= capitalize
capitalize! casecmp center chomp chomp!
chop chop! concat count crypt delete
delete! downcase downcase! dump each
each_byte each_line empty? eql? gsub
gsub! hash hex include? index
initialize_copy insert inspect intern
length ljust lstrip lstrip! match new
next next! oct replace reverse reverse!
rindex rjust rstrip rstrip! scan size
slice slice! split squeeze squeeze! strip
strip! sub sub! succ succ! sum swapcase
swapcase! to_f to_i to_s to_str to_sym tr
tr! tr_s tr_s! unpack upcase upcase! upto

Core Methods With I18n Issues
== =~ [] []= eql? gsub gsub! index length
lstrip lstrip! match rindex rstrip
rstrip! scan size slice slice! strip
strip! sub sub! tr tr!

Missing String Method
each_char

Needs to be correct and efficient; should
serve as the basis for many other methods.
Should “just know” about encoding issues.

Alternatively, change String#each

1. Allow regexp as well as String argument.

2. Change the default to /./mu from "\n".

3. include Enumerable.

On Byte-buffers and Strings

[] for addressing bytes is OK, because
characters are normally read in sequence.
def substr(start, len)
 index = -start
 s = ''
 each_char do |c|
 break if index == len
 s << c unless index < 0
 index += 1
 end
 s
end
def charAt(index) substr(index, 1); end

On Case-folding

Lower-case ‘I’: ‘i’ or ‘ı’?
Upper-case ‘i’: ‘I’ or ‘İ’?
Upper-case ‘ß’?
Upper-case ‘é’?
Just Say No!

Dangerous String Methods
capitalize capitalize! casecmp downcase
downcase! swapcase swapcase! upcase
upcase!

Avoid case-folding hell.

Advanced String Methods
[] each_byte unpack

99.99999% of the time, programmers want to
deal with characters not bytes. I know of one
exception: running a state machine on UTF8-
encoded text. This is done by the Expat XML
parser.

stag = "<[^/]([^>]*[^/>])?>"
etag = "</[^>]*>"
empty = "<[^>]*/>"

alnum = '\p{L}|\p{N}|' +
 '[\x{4e00}-\x{9fa5}]|' +
 '\x{3007}|[\x{3021}-\x{3029}]'
wordChars =
 '\p{L}|\p{N}|' + "[-._:']|" +
 '\x{2019}|[\x{4e00}-\x{9fa5}]|\x{3007}|' +
 '[\x{3021}-\x{3029}]'

word = "((#{alnum})((#{wordChars})*(#{alnum}))?)"
text = "(#{stag})|(#{etag})|(#{empty})|#{word}"
regex = /#{text}/

Regexp and Unicode

e.g. “won’t-go”

Oniguruma can’t
do these

Referring to Characters
if in_euro_area?
 append 0x20ac # Euro
elsif in_japan?
 append 0xa5 # Yen
else
 append '$'
end

Common idiom while writing XML.

Question: Does Ruby need a Character class?

What Should Ruby Do?

In 2006, programmers around the world expect
that, in modern languages, strings are Unicode
and string APIs provide Unicode semantics
correctly & efficiently, by default. Otherwise,
they perceive this as an offense against their
language and their culture. Humanities-
computing academics often need to work
outside Unicode. Few others do.

Who’s Working on the Problem?

Matz: M17n for Ruby 2
Julik: ActiveSupport::MultiByte (in edge Rails)
Nikolai: Character encodings project
(rubyforge.org/projects/char-encodings/)
JRuby guys: Ruby on a Unicode platform

Thank You!

Tim.Bray@sun.com
www.tbray.org/ongoing/
this talk: www.tbray.org/talks/rubyconf2006.pdf

