
High-performance Android apps
Tim Bray

Wednesday, November 24, 2010

Two Questions

How do you
make your app

run fast?

When your app has to do
some real work, how do
keep the user experience

pleasant?

Wednesday, November 24, 2010

“Jank”
• Chrome team's term for stalling the event loop,

i.e. not instantly responsive to input; now in
Android we say “A janky app”

• Eliminate by:

• Reacting to events quickly

• Don't hog the event loop (“main” / UI) thread!

• Getting back into the select() / epoll_wait()
call ASAP, so you can react to future events
quickly (touches, drags)

• Else...

Wednesday, November 24, 2010

Wednesday, November 24, 2010

ANR: “App Not Responding”
• Happens when:

• UI thread doesn't respond to input event in 5
seconds, or

• a BroadcastReceiver doesn't finish in 10
seconds

• Typically due to network or storage
operations on main thread

• But users complain about delays much less
than 5 seconds!

Wednesday, November 24, 2010

Some Nexus One Numbers

• ~0.04 ms: writing a byte on pipe process A->B, B->A
or reading simple /proc files from Dalvik

• ~0.12 ms: void/void Binder RPC call A->B, B->A

• ~5-25 ms: uncached flash reading a byte

• ~5-200+(!) ms: uncached flash writing tiny amount

• 108/350/500/800 ms: ping over 3G. Variable!

• ~1-6+ seconds: TCP setup + HTTP fetch of 6k via 3G

One frame of 60 fps video: 16 ms. Human perception of
slow action: 100-200 ms.

Wednesday, November 24, 2010

Writing to flash (yaffs2)

Source: empirical samples over Google employee phones (Mar 2010)

• Create file, 512 byte
write, delete (ala
sqlite .journal in
transaction)

• Flash is different than
disks you're likely used
to: read, write, erase,
wear-leveling, GC

• Write performance is
highly variable!

Wednesday, November 24, 2010

Sqlite Performance
• There’s no such thing as a cheap write

• Use indexes (see EXPLAIN & EXPLAIN
QUERY PLAN)

• For logging, consider file-append rather than
database-write

Wednesday, November 24, 2010

Lessons
• Writing to storage is slow

• Using the network is slow

• Always assume the worst; performance is
guaranteed to produce bad reviews and Market
ratings

Wednesday, November 24, 2010

Lessons
• Writing to storage is slow

• Using the network is slow

• Always assume the worst; performance is
guaranteed to produce bad reviews and Market
ratings

• So do your I/O and heavy computation on
another thread, not the UI thread!

Wednesday, November 24, 2010

Tools: asyncTask

“AsyncTask enables proper
and easy use of the UI
thread. This class allows to
perform background
operations and publish
results on the UI thread
without having to manipulate
threads and/or handlers.”

Wednesday, November 24, 2010

Tool: asyncTask
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {

 protected Long doInBackground(URL... urls) { // on some background thread

 int count = urls.length; long totalSize = 0;

 for (int i = 0; i < count; i++) {

 totalSize += Downloader.downloadFile(urls[i]);

 publishProgress((int) ((i / (float) count) * 100));

 }

 return totalSize;

 }

 protected void onProgressUpdate(Integer... progress) { // on UI thread!

 setProgressPercent(progress[0]);

 }

 protected void onPostExecute(Long result) { // on UI thread!

 showDialog("Downloaded " + result + " bytes");

 }

 }

 new DownloadFilesTask().execute(url1, url2, url3); // call from UI thread!

Wednesday, November 24, 2010

Tool: asyncTask

private boolean handleWebSearchRequest(final ContentResolver cr) {

 ...

 new AsyncTask<Void, Void, Void>() {

 protected Void doInBackground(Void... unused) {

 Browser.updateVisitedHistory(cr, newUrl, false);

 Browser.addSearchUrl(cr, newUrl);

 return null;

 }

 }.execute()

 ...

 return true;

 }

“Fire and forget” mode

Wednesday, November 24, 2010

asyncTask Details
• Must be called from a main thread

• rather, a thread with a Handler/Looper

• No nested calls!

• An activity process may exit before its
AsyncTask completes (user goes elsewhere,
low RAM, etc).

• If this is a problem, use IntentService

Wednesday, November 24, 2010

Tool: android.app.IntentService
• “IntentService is a base class for Services that

handle asynchronous requests (expressed as
Intents) on demand. Clients send requests
through startService(Intent) calls; the service is
started as needed, handles each Intent in turn
using a worker thread, and stops itself when it
runs out of work.”

• Intent happens in a Service, so Android tries
hard not to kill it

• Easy way to do use a Service

Wednesday, November 24, 2010

Calendar's use of IntentService
public class DismissAllAlarmsService extends IntentService {

 @Override public void onHandleIntent(Intent unusedIntent) {

 ContentResolver resolver = getContentResolver();

 ...

 resolver.update(uri, values, selection, null);

 }

}

In AlertReceiver extends BroadcastReceiver, onReceive() (main thread)

 Intent intent = new Intent(context, DismissAllAlarmsService.class);

 context.startService(intent);

Wednesday, November 24, 2010

UI Tips
• Disable UI elements immediately, before kicking off

your AsyncTask to finish the task

• Use an animation or ProgressDialog to show you’re
working

• One example strategy:

1. Immediately, disable UI elements

2. Briefly, a spinner in the title bar

3. If more than 200msec, show a ProgressDialog

4. in AsyncTask onPostExecute, cancel alarm timer

Wednesday, November 24, 2010

App performance lessons
• Network and storage UI hurt (but you already knew

that)

• Excessive memory allocation hurts

• Reflection hurts

• See “Design for Performance” at
developer.android.com: Static is good, internal
getters/setters hurt, floats and enums hurt, make
constants final,

Wednesday, November 24, 2010

Demo: LifeSaver
• Suppose you’re getting a new Android phone. Your

contacts and calendar and so on will move over
automatically.

• But your history of phone calls and text messages
won’t. This is your life!

• So, run LifeSaver on your old phone and it copies
that history to the SD card.

• Move the SD card to the new phone and run it again
and it copies the history back.

• This takes a while!

Wednesday, November 24, 2010

Performance Advice
“Premature optimization is the root of all evil.”
-Donald Knuth

Wednesday, November 24, 2010

Performance Advice

1. Design the simplest thing that could possible
work, where “could possibly work” excludes
doing network transactions on the UI thread.

2. If it’s fast enough, you’re done!

3. If it’s not fast enough, don’t guess. Measure
and find out why.

4. Fix the biggest performance problems.

5. goto 2

“Premature optimization is the root of all evil.”
-Donald Knuth

Wednesday, November 24, 2010

Profiling Tools
• Traceview

• Log.d() calls with a timestamp aren’t terrible

• Extreme profiling: Aggregate user profile data

Wednesday, November 24, 2010

Traceview
1. android.os.Debug.startMethodTracing(String fname)

2. android.os.Debug.stopMethodTracing()

3. adb pull /sdcard/<fname>.trace <fname>.trace

4. traceview <fname>

Wednesday, November 24, 2010

Demo
Profiling Tim’s “LifeSaver 2”
application with traceview.

Wednesday, November 24, 2010

Traceview: Cautions
1. Overestimates the penalty for method dispatch

2. JIT is disabled

3. Numbers are not quantitatively reliable

4. Really only gives you a general feeling for what’s
happening

Wednesday, November 24, 2010

Future directions
1. Optimized screen manager

2. “Strict” mode, to detect I/O on the UI thread

3. Better profiling tools!

Wednesday, November 24, 2010

Thank you!
feedback: bit.ly/mgddbr
Tim Bray, Developer Advocate
twbray@google.com android-developers.blogspot.com @AndroidDev

Wednesday, November 24, 2010

